The aim of this study is to design and implement a virtual reality bicycle system based on a functional-based mechatronic design approach. The development of virtual reality technologies with haptic systems demands a proper integration of the involved disciplines to provide immerse experiences for users. The proposed design approach provides a formal manner to gather the subsystems in the mechatronic device. The developed system is divided in a Virtual Reality System (VRS) and a Physical System (PS) for the design process. The former includes an interactive virtual environment in which an Avatar is animated using a simple kinematic bicycle model. The latter includes an adapted mountain bicycle with haptic feedback mechanisms to interact with the user and to produce the corresponding inputs for the bicycle model. Both systems are integrated by a control behavior system that works under two operation modes, where the user carries out virtual tours and gets feedbacks from a stereoscopic display system, audio cues, and haptic mechanisms. A multibody simulation validates the consistency and the integration of the physical system. In addition, a set of experimental results show the performance of instrumentation elements, control strategies, and feedback mechanisms, to provide the user with an immersive experience in the virtual environment. A brief survey was carried out to assess the opinion of users about the virtual bicycle tours, providing feedback for future improvements. The different designed modules and sub-systems allow modifying and enhancing the VRS without major modifications of the PS, or allow enhancing the physical platform without affecting the functionality of the virtual environment.

Mechatronic design and implementation of a bicycle virtual reality system

S. Di Gennaro
2020-01-01

Abstract

The aim of this study is to design and implement a virtual reality bicycle system based on a functional-based mechatronic design approach. The development of virtual reality technologies with haptic systems demands a proper integration of the involved disciplines to provide immerse experiences for users. The proposed design approach provides a formal manner to gather the subsystems in the mechatronic device. The developed system is divided in a Virtual Reality System (VRS) and a Physical System (PS) for the design process. The former includes an interactive virtual environment in which an Avatar is animated using a simple kinematic bicycle model. The latter includes an adapted mountain bicycle with haptic feedback mechanisms to interact with the user and to produce the corresponding inputs for the bicycle model. Both systems are integrated by a control behavior system that works under two operation modes, where the user carries out virtual tours and gets feedbacks from a stereoscopic display system, audio cues, and haptic mechanisms. A multibody simulation validates the consistency and the integration of the physical system. In addition, a set of experimental results show the performance of instrumentation elements, control strategies, and feedback mechanisms, to provide the user with an immersive experience in the virtual environment. A brief survey was carried out to assess the opinion of users about the virtual bicycle tours, providing feedback for future improvements. The different designed modules and sub-systems allow modifying and enhancing the VRS without major modifications of the PS, or allow enhancing the physical platform without affecting the functionality of the virtual environment.
File in questo prodotto:
File Dimensione Formato  
ISA Transactions 2019.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 5.67 MB
Formato Adobe PDF
5.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ISA Transactions 2020 - Mechatronic design and implementation of a bicycle virtual reality system.pdf

solo utenti autorizzati

Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 5.67 MB
Formato Adobe PDF
5.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/137407
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact