This chapter presents a real-time emergency evacuation handling system based on internet of things (IoT) technologies. The IoT infrastructure has a core computational component that is in charge of minimizing the time necessary to evacuate people from a building. The space and time dimension are discretized according to metrics and models in literature, as well as original methods. The component formulates and solves a linearized, time-indexed flow problem on a network that represents feasible movements of people at a suitable frequency. Accurate parameter setting makes the computational time to solve the model compliant with real-time use. An application of the proposed IoT system and its core algorithm to handle safe evacuation test in Palazzo Camponeschi—a building in L’Aquila (Italy) now and then used for exhibitions—is described, and diverse uses of the methodology are presented.
IoT Flows: a network model application to building evacuation
Claudio Arbib;Henry Muccini
2019-01-01
Abstract
This chapter presents a real-time emergency evacuation handling system based on internet of things (IoT) technologies. The IoT infrastructure has a core computational component that is in charge of minimizing the time necessary to evacuate people from a building. The space and time dimension are discretized according to metrics and models in literature, as well as original methods. The component formulates and solves a linearized, time-indexed flow problem on a network that represents feasible movements of people at a suitable frequency. Accurate parameter setting makes the computational time to solve the model compliant with real-time use. An application of the proposed IoT system and its core algorithm to handle safe evacuation test in Palazzo Camponeschi—a building in L’Aquila (Italy) now and then used for exhibitions—is described, and diverse uses of the methodology are presented.File | Dimensione | Formato | |
---|---|---|---|
AIRO.Chapter.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
5.33 MB
Formato
Adobe PDF
|
5.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.