The focus of the present paper is to propose and discuss different procedures for performing variable selection in a multi-block regression context. In particular, the focus is on two multi-block regression methods: Multi-Block Partial Least Squares (MB-PLS) and Sequential and Orthogonalized Partial Least Squares (SO-PLS) regression. A small simulation study for regular PLS regression was conducted in order to select the most promising methods to investigate further in the multi-block context. The combinations of three variable selection methods with MB-PLS and SO-PLS are examined in detail. These methods are Variable Importance in Projection (VIP) Selectivity Ratio (SR) and forward selection. In this paper we focus on both prediction ability and interpretation. The different approaches are tested on three types of data: one sensory data set, one spectroscopic (Raman) data set and a number of simulated multi-block data sets. (C) 2016 Elsevier B.V. All rights reserved.

Variable selection in multi-block regression

Biancolillo A.
;
2016-01-01

Abstract

The focus of the present paper is to propose and discuss different procedures for performing variable selection in a multi-block regression context. In particular, the focus is on two multi-block regression methods: Multi-Block Partial Least Squares (MB-PLS) and Sequential and Orthogonalized Partial Least Squares (SO-PLS) regression. A small simulation study for regular PLS regression was conducted in order to select the most promising methods to investigate further in the multi-block context. The combinations of three variable selection methods with MB-PLS and SO-PLS are examined in detail. These methods are Variable Importance in Projection (VIP) Selectivity Ratio (SR) and forward selection. In this paper we focus on both prediction ability and interpretation. The different approaches are tested on three types of data: one sensory data set, one spectroscopic (Raman) data set and a number of simulated multi-block data sets. (C) 2016 Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
MBVariableSelection.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/139316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 49
social impact