In this paper we prove local Hölder continuity of vectorial local minimizers of special classes of integral functionals with rank-one and polyconvex integrands. The energy densities satisfy suitable structure assumptions and may have neither radial nor quasi-diagonal structure. The regularity of minimizers is obtained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude about the Hölder continuity. In the final section, we provide some non-trivial applications of our results.

On the Hölder continuity for a class of vectorial problems

Leonetti F.;
2020-01-01

Abstract

In this paper we prove local Hölder continuity of vectorial local minimizers of special classes of integral functionals with rank-one and polyconvex integrands. The energy densities satisfy suitable structure assumptions and may have neither radial nor quasi-diagonal structure. The regularity of minimizers is obtained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude about the Hölder continuity. In the final section, we provide some non-trivial applications of our results.
File in questo prodotto:
File Dimensione Formato  
ANONA-D-19-00172_electronic.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 444.07 kB
Formato Adobe PDF
444.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/142686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact