Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.

Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer

Farina A. R.;Cappabianca L.;Sebastiano M.;Zelli V.;Guadagni S.;Mackay A. R.
2020-01-01

Abstract

Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
File in questo prodotto:
File Dimensione Formato  
Review hypoxia 2020.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/147312
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 61
social impact