According to the 2016 World Health Organization (WHO) classification of tumors of the central nervous system, assessment of exon 4 mutations in isocitrate dehydrogenase 1 or 2 genes (IDH1 or IDH2) is an essential step in the characterization of gliomas. The p.R132H mutation is the most frequent alteration in IDH genes, however other non-canonical IDH mutations can be identified. The aim of this study is to investigate in depth the prevalence of non-R132H IDH (“non-canonical”) mutations in brain tumors classified according to the 2016 WHO scheme and their clonal distribution in neoplastic cells. A total of 288 consecutive cases of brain gliomas (grade II–IV) were analyzed for exon 4 IDH1 and IDH2 mutations. IDH1 and IDH2 analysis was performed using next generation sequencing. Non-canonical IDH mutations were identified in 13/52 (25.0%) grade II gliomas (astrocytomas: 8/31, 25.8%; oligodendrogliomas: 5/21, 23.8%) and in 5/40 (12.5%) grade III gliomas (astrocytomas: 3/25, 12.0%; oligodendrogliomas: 2/15, 13.3%). They were not identified in 196 grade IV gliomas (192 glioblastomas, 4 gliosarcomas). In the large majority (>80%) of tumors IDH mutations, both IDH1-R132H and the non-canonical ones, were present in the large majority (>80%) of neoplastic cells. Our data highlight the importance of investigating not only the IDH1-R132H mutation but also the non-canonical ones. These mutations are clonally distributed, with proportions of mutated neoplastic cells overlapping with those of p.R132H, a finding consistent with their driver role in gliomagenesis.

Non-canonical IDH1 and IDH2 mutations: a clonal and relevant event in an Italian cohort of gliomas classified according to the 2016 World Health Organization (WHO) criteria

Grifoni D.;
2017-01-01

Abstract

According to the 2016 World Health Organization (WHO) classification of tumors of the central nervous system, assessment of exon 4 mutations in isocitrate dehydrogenase 1 or 2 genes (IDH1 or IDH2) is an essential step in the characterization of gliomas. The p.R132H mutation is the most frequent alteration in IDH genes, however other non-canonical IDH mutations can be identified. The aim of this study is to investigate in depth the prevalence of non-R132H IDH (“non-canonical”) mutations in brain tumors classified according to the 2016 WHO scheme and their clonal distribution in neoplastic cells. A total of 288 consecutive cases of brain gliomas (grade II–IV) were analyzed for exon 4 IDH1 and IDH2 mutations. IDH1 and IDH2 analysis was performed using next generation sequencing. Non-canonical IDH mutations were identified in 13/52 (25.0%) grade II gliomas (astrocytomas: 8/31, 25.8%; oligodendrogliomas: 5/21, 23.8%) and in 5/40 (12.5%) grade III gliomas (astrocytomas: 3/25, 12.0%; oligodendrogliomas: 2/15, 13.3%). They were not identified in 196 grade IV gliomas (192 glioblastomas, 4 gliosarcomas). In the large majority (>80%) of tumors IDH mutations, both IDH1-R132H and the non-canonical ones, were present in the large majority (>80%) of neoplastic cells. Our data highlight the importance of investigating not only the IDH1-R132H mutation but also the non-canonical ones. These mutations are clonally distributed, with proportions of mutated neoplastic cells overlapping with those of p.R132H, a finding consistent with their driver role in gliomagenesis.
File in questo prodotto:
File Dimensione Formato  
Visani et al 2017.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 870.62 kB
Formato Adobe PDF
870.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/150120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact