The authors investigated the dynamic behaviour of the San Silvestro belfry in L'Aquila (Italy). The 2009 earthquake in L'Aquila caused severe damages to the entire masonry complex. Extensive rehabilitation works, ended in 2019, repaired the structure and enhanced its seismic safety. In this paper, the authors discuss three aspects typical of masonry towers by interpreting the outcomes of Operational Modal Analysis carried out on December 2019: the interactions between the tower and the masonry complex, the dynamic effects of the bell, and the seismic reliability assessment of the tower. Specifically, the experimental mode shapes drive the estimation of an equivalent cross-section, whose principal axes of inertia match with the directions of oscillation of the mode shapes, and the parameters of an equivalent cantilevered beam roughly representative of the tower dynamics. In a second step, a two-degrees-of-freedom analytical model simulates the dynamic coupling between the tower and the more massive bell. The response of the system to a set of seven strong-motion earthquakes yields the assessment of the bell effects over the seismic performance of the masonry tower.

Identification and Model Update of the Dynamic Properties of the San Silvestro Belfry in L'Aquila and Estimation of Bell's Dynamic Actions

Aloisio A.;Capanna I.;Cirella R.;Alaggio R.;Di Fabio F.;Fragiacomo M.
2020-01-01

Abstract

The authors investigated the dynamic behaviour of the San Silvestro belfry in L'Aquila (Italy). The 2009 earthquake in L'Aquila caused severe damages to the entire masonry complex. Extensive rehabilitation works, ended in 2019, repaired the structure and enhanced its seismic safety. In this paper, the authors discuss three aspects typical of masonry towers by interpreting the outcomes of Operational Modal Analysis carried out on December 2019: the interactions between the tower and the masonry complex, the dynamic effects of the bell, and the seismic reliability assessment of the tower. Specifically, the experimental mode shapes drive the estimation of an equivalent cross-section, whose principal axes of inertia match with the directions of oscillation of the mode shapes, and the parameters of an equivalent cantilevered beam roughly representative of the tower dynamics. In a second step, a two-degrees-of-freedom analytical model simulates the dynamic coupling between the tower and the more massive bell. The response of the system to a set of seven strong-motion earthquakes yields the assessment of the bell effects over the seismic performance of the masonry tower.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/151821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact