In this letter, the notion of GALES (Global Asymptotic Local Exponential Stability) is extended to nonlinear systems described by Retarded Functional Differential Equations. Necessary and sufficient Lyapunov-Krasovskii conditions ensuring the GALES of nonlinear time-delay systems are provided. The conditions related to the lower bound and to the dissipation rate of the Lyapunov-Krasovskii functional involve only the current value of the solution, making the provided tool easy to use. An example validating the results is presented.
A Converse Lyapunov-Krasovskii Theorem for the Global Asymptotic Local Exponential Stability of Nonlinear Time-Delay Systems
DI Ferdinando M.;Pepe P.;Di Gennaro S
2021-01-01
Abstract
In this letter, the notion of GALES (Global Asymptotic Local Exponential Stability) is extended to nonlinear systems described by Retarded Functional Differential Equations. Necessary and sufficient Lyapunov-Krasovskii conditions ensuring the GALES of nonlinear time-delay systems are provided. The conditions related to the lower bound and to the dissipation rate of the Lyapunov-Krasovskii functional involve only the current value of the solution, making the provided tool easy to use. An example validating the results is presented.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IEEE Control Systems Letters - L-CSS 2021 - A Converse Lyapunov-Krasovskii Theorem for the Global Asymptotic Local Exponential Stability of Nonlinear Time-Delay Systems.pdf
solo utenti autorizzati
Tipologia:
Documento in Versione Editoriale
Licenza:
Dominio pubblico
Dimensione
496.14 kB
Formato
Adobe PDF
|
496.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.