Ceramic sherds are the most common finds in archaeology. They are complex to analyze and onerous to process. A large number of indistinct sherds coming from excavations must be preliminarily grouped in some categories. This clusterization helps the next phase, in which archaeologists classify the ceramics. Due to the difficulty of these preliminary, repetitive, and routine phases, a great deal of archaeological material remains unstudied in museum repositories or archaeological sites. An effective method to automate these routine phases is presented in this article. The proposed method performs a shape feature segmentation of the sherds, which is fundamental to undertake any further analysis, such as potsherds classification, reconstruction, or cataloging. A set of specific shape features, useful to understand the find properties, is defined and methods for recognizing them are proposed. The method's performance is tested in the analysis of some real, critical cases.
Automatic shape feature recognition for ceramic finds
Di Angelo L.;Di Stefano P.
;Guardiani E.;
2020-01-01
Abstract
Ceramic sherds are the most common finds in archaeology. They are complex to analyze and onerous to process. A large number of indistinct sherds coming from excavations must be preliminarily grouped in some categories. This clusterization helps the next phase, in which archaeologists classify the ceramics. Due to the difficulty of these preliminary, repetitive, and routine phases, a great deal of archaeological material remains unstudied in museum repositories or archaeological sites. An effective method to automate these routine phases is presented in this article. The proposed method performs a shape feature segmentation of the sherds, which is fundamental to undertake any further analysis, such as potsherds classification, reconstruction, or cataloging. A set of specific shape features, useful to understand the find properties, is defined and methods for recognizing them are proposed. The method's performance is tested in the analysis of some real, critical cases.File | Dimensione | Formato | |
---|---|---|---|
Automatic Shape Feature Recognition for Ceramic Finds.pdf
solo utenti autorizzati
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
21.51 MB
Formato
Adobe PDF
|
21.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Automatic Shape Feature Recognition for Ceramic Finds_compressed.pdf
solo utenti autorizzati
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.