We investigate some dynamical properties of nonlocal interaction equations. We consider sets of particles interacting pairwise via a potential W, as well as continuum descriptions of such systems. The typical potentials we consider are repulsive at short distances, but attractive at long distances. The main question we consider is whether an initially localized conguration remains localized for all times, regardless of the number of particles or their arrangement. In particular we find sucient conditions on the potential W for the above "confinement" property to hold. We use the framework of weak measure solutions developed in a previous paper by the authors, to provide unfiied treatment of both particle and continuum systems.
Confinement in nonlocal interaction equations
DI FRANCESCO, MARCO;
2012-01-01
Abstract
We investigate some dynamical properties of nonlocal interaction equations. We consider sets of particles interacting pairwise via a potential W, as well as continuum descriptions of such systems. The typical potentials we consider are repulsive at short distances, but attractive at long distances. The main question we consider is whether an initially localized conguration remains localized for all times, regardless of the number of particles or their arrangement. In particular we find sucient conditions on the potential W for the above "confinement" property to hold. We use the framework of weak measure solutions developed in a previous paper by the authors, to provide unfiied treatment of both particle and continuum systems.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.