Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aβ42-amyloid self-aggregation, and their cellular neuroprotective effect against Aβ42-induced neurotoxicity. The fact that 6 effectively reduced Aβ-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aβ42-expressing Drosophila and to improve fly locomotor performance.

From Combinations to Single-Molecule Polypharmacology-Cromolyn-Ibuprofen Conjugates for Alzheimer's Disease

Grifoni, Daniela
Membro del Collaboration Group
;
2021-01-01

Abstract

Despite Alzheimer's disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm "one target-one drug-one disease" in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn-ibuprofen drug combination into single-molecule "codrugs." Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn-ibuprofen conjugates (4-6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aβ42-amyloid self-aggregation, and their cellular neuroprotective effect against Aβ42-induced neurotoxicity. The fact that 6 effectively reduced Aβ-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aβ42-expressing Drosophila and to improve fly locomotor performance.
File in questo prodotto:
File Dimensione Formato  
Albertini et al 2021.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/160201
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact