Heavy-fermion systems share some of the strange metal phenomenology seen in other unconventional superconductors, providing a unique opportunity to set strange metals in a broader context. Central to understanding heavy-fermion systems is the interplay of localization and itinerancy. These materials acquire high electronic masses and a concomitant Fermi volume increase as the f electrons delocalize at low temperatures. However, despite thewide-spread acceptance of this view, a direct microscopic verification has been lacking. Here we report high-resolution angle-resolved photoemission measurements on CeCoIn5, a prototypical heavy-fermion compound, which spectroscopically resolve the development of band hybridization and the Fermi surface expansion over a wide temperature region. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized even at the lowest temperature. These findings point to an unanticipated role played by crystal-field excitations in the strange metal behavior of CeCoIn5. Our results offer a comprehensive experimental picture of the heavy-fermion formation, setting the stage for understanding the emergent properties, including unconventional superconductivity, in this and related materials.

Direct observation of how the heavy-fermion state develops in CeCoIn5

Bisti F;
2017-01-01

Abstract

Heavy-fermion systems share some of the strange metal phenomenology seen in other unconventional superconductors, providing a unique opportunity to set strange metals in a broader context. Central to understanding heavy-fermion systems is the interplay of localization and itinerancy. These materials acquire high electronic masses and a concomitant Fermi volume increase as the f electrons delocalize at low temperatures. However, despite thewide-spread acceptance of this view, a direct microscopic verification has been lacking. Here we report high-resolution angle-resolved photoemission measurements on CeCoIn5, a prototypical heavy-fermion compound, which spectroscopically resolve the development of band hybridization and the Fermi surface expansion over a wide temperature region. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized even at the lowest temperature. These findings point to an unanticipated role played by crystal-field excitations in the strange metal behavior of CeCoIn5. Our results offer a comprehensive experimental picture of the heavy-fermion formation, setting the stage for understanding the emergent properties, including unconventional superconductivity, in this and related materials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/162575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 96
  • ???jsp.display-item.citation.isi??? 95
social impact