We present and analyze two simple $N$-particle particle systems for the spread of an infection, respectively with binary and with multi-body interactions. We establish a convergence result, as $N o infty$, to a set of kinetic equations, providing a mathematical justification of related numerical schemes. We analyze rigorously the time asymptotics of these equations, and compare the models numerically.

Kinetic SIR equations and particle limits

ciallella alessandro
;
2021-01-01

Abstract

We present and analyze two simple $N$-particle particle systems for the spread of an infection, respectively with binary and with multi-body interactions. We establish a convergence result, as $N o infty$, to a set of kinetic equations, providing a mathematical justification of related numerical schemes. We analyze rigorously the time asymptotics of these equations, and compare the models numerically.
File in questo prodotto:
File Dimensione Formato  
CPS_EMS_newsir.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 479.87 kB
Formato Adobe PDF
479.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/164917
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact