Since management practices profoundly influence soil characteristics, the adoption of sustainable agro-ecological practices is essential for soil health conservation. We compared soil health in organic and conventional fields in the Abruzzi region (central Italy) by using (1) the soil biology quality (QBS) index (which expresses the level of specialisation in soil environment shown by microarthropods) and (2) microarthropod diversity expressed by Hill numbers. QBS values were calculated using both the original formulation based on only presence/absence data and a new abundance-based version. We found that organic management improves soil biology quality, which encourages the use of organic farming to maintain soil health. Including arthropod abundance in QBS calculation does not change the main outcomes, which supports the use of its original, speedier formulation. We also found that agricultural fields included in protected areas had greater soil health, which shows the importance of the matrix in determining agricultural soil health and highlights the importance of land protection in preserving biodiversity even in managed soils. Finally, we found that soil biology quality and microarthropod community structure are distinctly influenced by certain physical and chemical characteristics of the soil, which supports the use of microarthropods as biological indicators.

Comparison of soil biology quality in organically and conventionally managed agro-ecosystems using microarthropods

Mantoni C.;Pellegrini M.;Del Gallo M. M.;Pace L.;Fattorini S.
2021

Abstract

Since management practices profoundly influence soil characteristics, the adoption of sustainable agro-ecological practices is essential for soil health conservation. We compared soil health in organic and conventional fields in the Abruzzi region (central Italy) by using (1) the soil biology quality (QBS) index (which expresses the level of specialisation in soil environment shown by microarthropods) and (2) microarthropod diversity expressed by Hill numbers. QBS values were calculated using both the original formulation based on only presence/absence data and a new abundance-based version. We found that organic management improves soil biology quality, which encourages the use of organic farming to maintain soil health. Including arthropod abundance in QBS calculation does not change the main outcomes, which supports the use of its original, speedier formulation. We also found that agricultural fields included in protected areas had greater soil health, which shows the importance of the matrix in determining agricultural soil health and highlights the importance of land protection in preserving biodiversity even in managed soils. Finally, we found that soil biology quality and microarthropod community structure are distinctly influenced by certain physical and chemical characteristics of the soil, which supports the use of microarthropods as biological indicators.
File in questo prodotto:
File Dimensione Formato  
ok MANTONIagriculture-11-01022.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 577.51 kB
Formato Adobe PDF
577.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/172212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact