Computational electromagnetic problems require evaluating the electric and magnetic fields of the physical object under investigation, divided into elementary cells with a mesh. The partial element equivalent circuit (PEEC) method has recently received attention from academic and industry communities because it provides a circuit representation of the electromagnetic problem. The surface formulation, known as S-PEEC, requires computing quadruple integrals for each mesh patch. Several techniques have been developed to simplify the computational complexity of quadruple integrals but limited to triangular meshes as used in well-known methods such as the Method of Moments (MoM). However, in the S-PEEC method, the mesh can be rectangular and orthogonal, and new approaches must be investigated to simplify the quadruple integrals. This work proposes a numerical approach that treats the singularity and reduces the computational complexity of one of the two quadruple integrals used in the S-PEEC method. The accuracy and computational time are tested for representative parallel and orthogonal meshes.
On the rectangular mesh and the decomposition of a Green's-function-based quadruple integral into elementary integrals
De Lauretis M.
;Di Murro F.;Romano D.;Antonini G.;
2021-01-01
Abstract
Computational electromagnetic problems require evaluating the electric and magnetic fields of the physical object under investigation, divided into elementary cells with a mesh. The partial element equivalent circuit (PEEC) method has recently received attention from academic and industry communities because it provides a circuit representation of the electromagnetic problem. The surface formulation, known as S-PEEC, requires computing quadruple integrals for each mesh patch. Several techniques have been developed to simplify the computational complexity of quadruple integrals but limited to triangular meshes as used in well-known methods such as the Method of Moments (MoM). However, in the S-PEEC method, the mesh can be rectangular and orthogonal, and new approaches must be investigated to simplify the quadruple integrals. This work proposes a numerical approach that treats the singularity and reduces the computational complexity of one of the two quadruple integrals used in the S-PEEC method. The accuracy and computational time are tested for representative parallel and orthogonal meshes.File | Dimensione | Formato | |
---|---|---|---|
2 - Main_revised.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
770.28 kB
Formato
Adobe PDF
|
770.28 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.