Laser metal deposition (LMD) is an additive manufacturing process with an extreme potential in large-scale metal production. Among the printable metals, the Inconel 625 has found a wide variety of cutting-edge applications in the aerospace, defense, and space sectors. Thus, knowledge of mechanical properties under quasi-static and dynamic conditions is fundamental. In this work, the quasi-static and dynamic compression behavior of Inconel 625 obtained by LMD is presented. The curves of printed Inconel 625 showed a change in slope in the work hardening phase, which is due to the mechanics of the dislocation motion. Therefore, a modified two-stage (TS) Hollomon power-law is proposed to model this specific mechanical behavior, which identifies a threshold strain that delimit two different hardening behaviors. Furthermore, Johnson-Cook and Cowper-Symonds models were used to represent the effect of strain rate and temperature on the material properties. A variable strain rate sensitivity along the compression strain was found. Hence, double sensitivity terms were introduced into the TS Hollomon power-law, allowing to reproduce the dynamic behavior of Inconel 625.

Quasi-Static and Dynamic Behavior of Inconel 625 Obtained by Laser Metal Deposition: Experimental Characterization and Constitutive Modeling

Mancini, E;
2021-01-01

Abstract

Laser metal deposition (LMD) is an additive manufacturing process with an extreme potential in large-scale metal production. Among the printable metals, the Inconel 625 has found a wide variety of cutting-edge applications in the aerospace, defense, and space sectors. Thus, knowledge of mechanical properties under quasi-static and dynamic conditions is fundamental. In this work, the quasi-static and dynamic compression behavior of Inconel 625 obtained by LMD is presented. The curves of printed Inconel 625 showed a change in slope in the work hardening phase, which is due to the mechanics of the dislocation motion. Therefore, a modified two-stage (TS) Hollomon power-law is proposed to model this specific mechanical behavior, which identifies a threshold strain that delimit two different hardening behaviors. Furthermore, Johnson-Cook and Cowper-Symonds models were used to represent the effect of strain rate and temperature on the material properties. A variable strain rate sensitivity along the compression strain was found. Hence, double sensitivity terms were introduced into the TS Hollomon power-law, allowing to reproduce the dynamic behavior of Inconel 625.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/174985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact