Nowadays cellular materials are receiving great attention for their excellent mechanical properties, being applied in energy absorbers or in structural components having optimized mass distribution. In this paper stretch-dominated lattice structures have been considered. A 3D periodic lattice structure of different cell size, TPMS (triply periodic minimal surface), made of epoxy resin by DLP technology was studied. Compression tests at different strain rate (10-3 to 103 1/s) have been performed and a constitutive model to assess the experimental findings has been calibrated.

Model calibration of 3D printed lattice structures

Mancini E.
;
2021

Abstract

Nowadays cellular materials are receiving great attention for their excellent mechanical properties, being applied in energy absorbers or in structural components having optimized mass distribution. In this paper stretch-dominated lattice structures have been considered. A 3D periodic lattice structure of different cell size, TPMS (triply periodic minimal surface), made of epoxy resin by DLP technology was studied. Compression tests at different strain rate (10-3 to 103 1/s) have been performed and a constitutive model to assess the experimental findings has been calibrated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/175412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact