This paper concerns state constrained optimal control problems, in which the dynamic constraint takes the form of a differential inclusion. If the differential inclusion does not depend on time, then the Hamiltonian, evaluated along the optimal state trajectory and the costate trajectory, is independent of time. If the differential inclusion is Lipschitz continuous, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, is Lipschitz continuous. These two well-known results are examples of the following principle: the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, inherits the regularity properties of the differential inclusion, regarding its time dependence. We show that this principle also applies to another kind of regularity: if the differential inclusion has bounded variation w.r.t. time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, has bounded variation. Two applications of these newly found properties are demonstrated. One is to derive improved conditions which guarantee the nondegeneracy of necessary conditions of optimality in the form of a Hamiltonian inclusion. The other application is to derive new conditions under which minimizers in the calculus of variations have bounded slope. The analysis is based on a recently proposed, local concept of differential inclusions that have bounded variation w.r.t. the time variable, in which conditions are imposed on the multifunction involved, only in a neighborhood of a given state trajectory.

Regularity of the Hamiltonian along optimal trajectories

Palladino M;
2015

Abstract

This paper concerns state constrained optimal control problems, in which the dynamic constraint takes the form of a differential inclusion. If the differential inclusion does not depend on time, then the Hamiltonian, evaluated along the optimal state trajectory and the costate trajectory, is independent of time. If the differential inclusion is Lipschitz continuous, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, is Lipschitz continuous. These two well-known results are examples of the following principle: the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, inherits the regularity properties of the differential inclusion, regarding its time dependence. We show that this principle also applies to another kind of regularity: if the differential inclusion has bounded variation w.r.t. time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, has bounded variation. Two applications of these newly found properties are demonstrated. One is to derive improved conditions which guarantee the nondegeneracy of necessary conditions of optimality in the form of a Hamiltonian inclusion. The other application is to derive new conditions under which minimizers in the calculus of variations have bounded slope. The analysis is based on a recently proposed, local concept of differential inclusions that have bounded variation w.r.t. the time variable, in which conditions are imposed on the multifunction involved, only in a neighborhood of a given state trajectory.
File in questo prodotto:
File Dimensione Formato  
2015_SIAMJControlOptim_53_Palladino.pdf

non disponibili

Dimensione 331.47 kB
Formato Adobe PDF
331.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/176083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact