A collection of rigorous results for a class of mean-field monomer-dimer models is presented. It includes a Gaussian representation for the partition function that is shown to considerably simplify the proofs. The solutions of the quenched diluted case and the random monomer case are explained. The presence of the attractive component of the Van der Waals potential is considered and phase transition analysed. In particular the breakdown of the central limit theorem is illustrated at the critical point where a non Gaussian, quartic exponential distribution is found for the number of monomers centered and rescaled with the volume to the power 3/4.

Mean-field monomer-dimer models. a review

Alberici D.;
2019-01-01

Abstract

A collection of rigorous results for a class of mean-field monomer-dimer models is presented. It includes a Gaussian representation for the partition function that is shown to considerably simplify the proofs. The solutions of the quenched diluted case and the random monomer case are explained. The presence of the attractive component of the Van der Waals potential is considered and phase transition analysed. In particular the breakdown of the central limit theorem is illustrated at the critical point where a non Gaussian, quartic exponential distribution is found for the number of monomers centered and rescaled with the volume to the power 3/4.
2019
978-981-15-0293-4
978-981-15-0294-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/176486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact