We consider a one-dimensional discrete particle system of two species coupled through nonlocal interactions driven by the Newtonian potential, with repulsive self-interaction and attractive cross-interaction. After providing a suitable existence theory in a finite-dimensional framework, we explore the behaviour of the particle system in case of collisions and analyse the behaviour of the solutions with initial data featuring particle clusters. Subsequently, we prove that the empirical measure associated to the particle system converges to the unique 2-Wasserstein gradient flow solution of a system of two partial differential equations with nonlocal interaction terms in a proper measure sense. The latter result uses uniform estimates of the Lm-norms of a piecewise constant reconstruction of the density using the particle trajectories.

Many-particle limit for a system of interaction equations driven by Newtonian potentials

Esposito A.;Schmidtchen M.
2021

Abstract

We consider a one-dimensional discrete particle system of two species coupled through nonlocal interactions driven by the Newtonian potential, with repulsive self-interaction and attractive cross-interaction. After providing a suitable existence theory in a finite-dimensional framework, we explore the behaviour of the particle system in case of collisions and analyse the behaviour of the solutions with initial data featuring particle clusters. Subsequently, we prove that the empirical measure associated to the particle system converges to the unique 2-Wasserstein gradient flow solution of a system of two partial differential equations with nonlocal interaction terms in a proper measure sense. The latter result uses uniform estimates of the Lm-norms of a piecewise constant reconstruction of the density using the particle trajectories.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/177119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact