The ordinary Feynman-Kac-Ito formula gives a path integral representation of the Schrodinger semi-groups. We discuss here an analogous probabilistic expression for the (positive energy) solutions of the imaginary-time Klein-Gordon equation in a static external electromagnetic field. When the external field is not purely magnetic, our result is different from the path integral associated to the semi-group t is-an-element-of [0, + infinity) Bar-Arrow-Pointing-Right exp [- t(H - mc2)/hBAR] of a relativistic Schrodinger operator H = {c2[- i hBAR NABLA - (e/c) A]2 + m2c4}1/2 + V.

Imaginary-time path integrals from Klein-Gordon equation

SERVA, Maurizio
1992-01-01

Abstract

The ordinary Feynman-Kac-Ito formula gives a path integral representation of the Schrodinger semi-groups. We discuss here an analogous probabilistic expression for the (positive energy) solutions of the imaginary-time Klein-Gordon equation in a static external electromagnetic field. When the external field is not purely magnetic, our result is different from the path integral associated to the semi-group t is-an-element-of [0, + infinity) Bar-Arrow-Pointing-Right exp [- t(H - mc2)/hBAR] of a relativistic Schrodinger operator H = {c2[- i hBAR NABLA - (e/c) A]2 + m2c4}1/2 + V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/18135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact