Ceramics analysis, classification, and reconstruction are essential to know an archaeological site's history, economy, and art. Traditional methods used by the archaeologists for their investigation are time-consuming and are neither reproducible nor repeatable. The results depend on the operator's subjectivity, specialization, personal skills, and professional experience. Consequently, only a few indicative samples with characteristic components are studied with wide uncertainties. Several automatic methods for analysing sherds have been published in the last years to overcome these limitations. To help all the involved researchers, this paper aims to provide a complete and critical analysis of the state-of-the-art until the end of 2021 of the most important published methods on pottery analysis, classification, and reconstruction from a 3D discrete manifold model. To this end, papers in English indexed by the Scopus database are selected by using the following keywords: “computer methods in archaeology”, “3D archaeology”, “3D reconstruction”, “3D puzzling”, “automatic feature recognition and reconstruction”. Additional references complete the list found through the reading of selected papers. The 125 selected papers, referring to only archaeological potteries, are divided into six groups: 3D digitalization, virtual prototyping, Fragment features processing, geometric model processing of whole-shape pottery, 3D Vessel reconstruction from its fragments, classification, and 3D information systems for archaeological pottery visualization and documentation. In the present review, the techniques considered for these issues are critically analysed to highlight their pros and cons and provide recommendations for future research.

A review of computer-based methods for classification and reconstruction of 3D high-density scanned archaeological pottery

Di Angelo L.
;
Di Stefano P.;Guardiani E.
2022-01-01

Abstract

Ceramics analysis, classification, and reconstruction are essential to know an archaeological site's history, economy, and art. Traditional methods used by the archaeologists for their investigation are time-consuming and are neither reproducible nor repeatable. The results depend on the operator's subjectivity, specialization, personal skills, and professional experience. Consequently, only a few indicative samples with characteristic components are studied with wide uncertainties. Several automatic methods for analysing sherds have been published in the last years to overcome these limitations. To help all the involved researchers, this paper aims to provide a complete and critical analysis of the state-of-the-art until the end of 2021 of the most important published methods on pottery analysis, classification, and reconstruction from a 3D discrete manifold model. To this end, papers in English indexed by the Scopus database are selected by using the following keywords: “computer methods in archaeology”, “3D archaeology”, “3D reconstruction”, “3D puzzling”, “automatic feature recognition and reconstruction”. Additional references complete the list found through the reading of selected papers. The 125 selected papers, referring to only archaeological potteries, are divided into six groups: 3D digitalization, virtual prototyping, Fragment features processing, geometric model processing of whole-shape pottery, 3D Vessel reconstruction from its fragments, classification, and 3D information systems for archaeological pottery visualization and documentation. In the present review, the techniques considered for these issues are critically analysed to highlight their pros and cons and provide recommendations for future research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/195101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact