Let Mn(F) be the algebra of n x n matrices over a field F of characteristic zero. The superinvolutions ∗ on Mn(F) were classified by Racine in [12]. They are of two types, the transpose and the orthosymplectic superinvolution. This paper is devoted to the study of ∗-polynomial identities satisfied by Mn(F). The goal is twofold. On one hand, we determine the minimal degree of a standard polynomial vanishing on suitable subsets of symmetric or skew-symmetric matrices for both types of superinvolutions. On the other, in case of M2(F), we find generators of the ideal of ∗-identities and we compute the corresponding sequences of cocharacters and codimensions.

Standard polynomials and matrices with superinvolutions

Ioppolo A.;
2016-01-01

Abstract

Let Mn(F) be the algebra of n x n matrices over a field F of characteristic zero. The superinvolutions ∗ on Mn(F) were classified by Racine in [12]. They are of two types, the transpose and the orthosymplectic superinvolution. This paper is devoted to the study of ∗-polynomial identities satisfied by Mn(F). The goal is twofold. On one hand, we determine the minimal degree of a standard polynomial vanishing on suitable subsets of symmetric or skew-symmetric matrices for both types of superinvolutions. On the other, in case of M2(F), we find generators of the ideal of ∗-identities and we compute the corresponding sequences of cocharacters and codimensions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/200296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact