In this paper we study algebras with trace and their trace polynomial identities over a field of characteristic 0. We consider two commutative matrix algebras: D2, the algebra of 2×2 diagonal matrices and C2, the algebra of 2×2 matrices generated by e11+e22 and e12. We describe all possible traces on these algebras and we study the corresponding trace codimensions. Moreover we characterize the varieties with trace of polynomial growth generated by a finite dimensional algebra. As a consequence, we see that the growth of a variety with trace is either polynomial or exponential.
Trace identities and almost polynomial growth
Ioppolo A.;
2021-01-01
Abstract
In this paper we study algebras with trace and their trace polynomial identities over a field of characteristic 0. We consider two commutative matrix algebras: D2, the algebra of 2×2 diagonal matrices and C2, the algebra of 2×2 matrices generated by e11+e22 and e12. We describe all possible traces on these algebras and we study the corresponding trace codimensions. Moreover we characterize the varieties with trace of polynomial growth generated by a finite dimensional algebra. As a consequence, we see that the growth of a variety with trace is either polynomial or exponential.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.