The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double degeneracy, which creates significant novel challenges in the analysis of the system. We prove global existence of weak solutions and well-posedness of strong solutions close to equilibrium. We further study some asymptotics of the model, and in particular we characterize the large-time behavior of solutions.
Nonlinear Cross-Diffusion with Size Exclusion
DI FRANCESCO, MARCO;
2010-01-01
Abstract
The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double degeneracy, which creates significant novel challenges in the analysis of the system. We prove global existence of weak solutions and well-posedness of strong solutions close to equilibrium. We further study some asymptotics of the model, and in particular we characterize the large-time behavior of solutions.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.