The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS-CoV and SARS-CoV-2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ-binding motif at its C-terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS-CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS-CoV and SARS-CoV-2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS-CoV-2 compared to SARS-CoV may rely on the increased affinity of its Envelope protein for PALS1.

The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS-CoV and SARS-CoV-2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ-binding motif at its C-terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS-CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS-CoV and SARS-CoV-2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS-CoV-2 compared to SARS-CoV may rely on the increased affinity of its Envelope protein for PALS1. This article is protected by copyright. All rights reserved.

Comparing the binding properties of peptides mimicking the Envelope protein of SARS-CoV and SARS-CoV-2 to the PDZ domain of the tight junction-associated PALS1 protein

Malagrinò, Francesca;
2020-01-01

Abstract

The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS-CoV and SARS-CoV-2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ-binding motif at its C-terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS-CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS-CoV and SARS-CoV-2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS-CoV-2 compared to SARS-CoV may rely on the increased affinity of its Envelope protein for PALS1. This article is protected by copyright. All rights reserved.
2020
The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS-CoV and SARS-CoV-2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ-binding motif at its C-terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS-CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS-CoV and SARS-CoV-2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS-CoV-2 compared to SARS-CoV may rely on the increased affinity of its Envelope protein for PALS1.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/216438
Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact