SH3 domains are very abundant protein-protein interactions modules, involved in the regulation of several cellular processes. Whilst they have been associated to allosteric communication pathways between contiguous domains in multi-domain proteins, there is lack of information regarding the intra-domain allosteric cross-talk within the SH3 moiety. Here we scrutinize the presence of an allosteric network in the C-terminal SH3 domain of Grb2 protein, upon binding the Grb2-associated binding 2 protein. To explore allostery, we performed double mutant cycle analysis, a powerful quantitative approach based on mutagenesis in conjunction with kinetic experiments. Data reveal the presence of an unexpected allosteric sparse network that modulates the affinity between the SH3 domain and its physiological partner.

SH3 domains are very abundant protein-protein interactions modules, involved in the regulation of several cellular processes. Whilst they have been associated to allosteric communication pathways between contiguous domains in multi-domain proteins, there is lack of information regarding the intra-domain allosteric cross-talk within the SH3 moiety. Here we scrutinize the presence of an allosteric network in the C-terminal SH3 domain of Grb2 protein, upon binding the Grb2-associated binding 2 protein. To explore allostery, we performed double mutant cycle analysis, a powerful quantitative approach based on mutagenesis in conjunction with kinetic experiments. Data reveal the presence of an unexpected allosteric sparse network that modulates the affinity between the SH3 domain and its physiological partner.

Mapping the allosteric network within a SH3 domain

Malagrinò F.;
2019-01-01

Abstract

SH3 domains are very abundant protein-protein interactions modules, involved in the regulation of several cellular processes. Whilst they have been associated to allosteric communication pathways between contiguous domains in multi-domain proteins, there is lack of information regarding the intra-domain allosteric cross-talk within the SH3 moiety. Here we scrutinize the presence of an allosteric network in the C-terminal SH3 domain of Grb2 protein, upon binding the Grb2-associated binding 2 protein. To explore allostery, we performed double mutant cycle analysis, a powerful quantitative approach based on mutagenesis in conjunction with kinetic experiments. Data reveal the presence of an unexpected allosteric sparse network that modulates the affinity between the SH3 domain and its physiological partner.
2019
SH3 domains are very abundant protein-protein interactions modules, involved in the regulation of several cellular processes. Whilst they have been associated to allosteric communication pathways between contiguous domains in multi-domain proteins, there is lack of information regarding the intra-domain allosteric cross-talk within the SH3 moiety. Here we scrutinize the presence of an allosteric network in the C-terminal SH3 domain of Grb2 protein, upon binding the Grb2-associated binding 2 protein. To explore allostery, we performed double mutant cycle analysis, a powerful quantitative approach based on mutagenesis in conjunction with kinetic experiments. Data reveal the presence of an unexpected allosteric sparse network that modulates the affinity between the SH3 domain and its physiological partner.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/216442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact