The applicability of active thermography as a non-destructive method to distinguish heat treated from not-treated boron steel has been investigated. While the usual hardness semi-destructive tests influence the inspected surface, laser thermography is capable of verifying the effectiveness of heat treatment in boron steel in a non-destructive way without any surface modification. The procedure has been verified on two plates of boron steels with different structures (100% ferritic– pearlitic and 100% martensitic).

The applicability of active thermography as a non-destructive method to distinguish heat treated from not-treated boron steel has been investigated. While the usual hardness semi-destructive tests influence the inspected surface, laser thermography is capable of verifying the effectiveness of heat treatment in boron steel in a non-destructive way without any surface modification. The procedure has been verified on two plates of boron steels with different structures (100% ferritic–pearlitic and 100% martensitic).

Evaluation of Effectiveness of Heat Treatments in Boron Steel by Laser Thermography

Giuseppe Dell’Avvocato;
2021-01-01

Abstract

The applicability of active thermography as a non-destructive method to distinguish heat treated from not-treated boron steel has been investigated. While the usual hardness semi-destructive tests influence the inspected surface, laser thermography is capable of verifying the effectiveness of heat treatment in boron steel in a non-destructive way without any surface modification. The procedure has been verified on two plates of boron steels with different structures (100% ferritic– pearlitic and 100% martensitic).
2021
The applicability of active thermography as a non-destructive method to distinguish heat treated from not-treated boron steel has been investigated. While the usual hardness semi-destructive tests influence the inspected surface, laser thermography is capable of verifying the effectiveness of heat treatment in boron steel in a non-destructive way without any surface modification. The procedure has been verified on two plates of boron steels with different structures (100% ferritic–pearlitic and 100% martensitic).
File in questo prodotto:
File Dimensione Formato  
engproc-08-00008-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 903.92 kB
Formato Adobe PDF
903.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/220344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact