Let e be a CM elliptic curve defined over a number field K, with Weiestrass form y^2 = x^3 + bx or y^2 = x^3 + c. For every positive integer m, we denote by e[m] the m-torsion subgroup of E and by K-m ..= K (e[m]) the m-th division field, i.e. the extension of K generated by the coordinates of the points in E[m]. We classify all the fields K_7. In particular we give explicit generators for K_7/K and produce all the Galois groups Gal(K_7/K). We also show some applications to the Local-Global Divisibility Problem and to modular curves.

On 7-division fields of CM elliptic curves

Alessandri Jessica
Writing – Original Draft Preparation
;
2023-01-01

Abstract

Let e be a CM elliptic curve defined over a number field K, with Weiestrass form y^2 = x^3 + bx or y^2 = x^3 + c. For every positive integer m, we denote by e[m] the m-torsion subgroup of E and by K-m ..= K (e[m]) the m-th division field, i.e. the extension of K generated by the coordinates of the points in E[m]. We classify all the fields K_7. In particular we give explicit generators for K_7/K and produce all the Galois groups Gal(K_7/K). We also show some applications to the Local-Global Divisibility Problem and to modular curves.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/228899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact