A plant's structure is the result of constant adaptation and evolution to the surrounding environment. From this perspective, our goal is to investigate the mass and radius distribution of a particular plant organ, namely the searcher shoot, by providing a Reinforcement Learning (RL) environment, that we call Searcher-Shoot, which considers the mechanics due to the mass of the shoot and leaves. We uphold the hypothesis that plants maximize their length, avoiding a maximal stress threshold. To do this, we explore whether the mass distribution along the stem is efficient, formulating a Markov Decision Process. By exploiting this strategy, we are able to mimic and thus study the plant's behavior, finding that shoots decrease their diameters smoothly, resulting in an efficient distribution of the mass. The strong accordance between our results and the experimental data allows us to remark on the strength of our approach in the analysis of biological systems traits.

A Reinforcement Learning approach to study climbing plant behaviour

Palladino, Michele;Marcati, Pierangelo
2024-01-01

Abstract

A plant's structure is the result of constant adaptation and evolution to the surrounding environment. From this perspective, our goal is to investigate the mass and radius distribution of a particular plant organ, namely the searcher shoot, by providing a Reinforcement Learning (RL) environment, that we call Searcher-Shoot, which considers the mechanics due to the mass of the shoot and leaves. We uphold the hypothesis that plants maximize their length, avoiding a maximal stress threshold. To do this, we explore whether the mass distribution along the stem is efficient, formulating a Markov Decision Process. By exploiting this strategy, we are able to mimic and thus study the plant's behavior, finding that shoots decrease their diameters smoothly, resulting in an efficient distribution of the mass. The strong accordance between our results and the experimental data allows us to remark on the strength of our approach in the analysis of biological systems traits.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/244039
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact