We give sharp conditions for global in time existence of gradient flow solutions to a Cahn-Hilliard-type equation, with backwards second-order degenerate diffusion, in any dimension and for general initial data. Our equation is the 2-Wasserstein gradient flow of a free energy with two competing effects: the Dirichlet energy and the power-law internal energy. Homogeneity of the functionals reveals critical regimes that we analyse. Sharp conditions for global in time solutions, constructed via the minimising movement scheme, also known as JKO scheme, are obtained. Furthermore, we study a system of two Cahn-Hilliard-type equations exhibiting an analogous gradient flow structure.

Competing effects in fourth-order aggregation–diffusion equations

Esposito A.;
2024-01-01

Abstract

We give sharp conditions for global in time existence of gradient flow solutions to a Cahn-Hilliard-type equation, with backwards second-order degenerate diffusion, in any dimension and for general initial data. Our equation is the 2-Wasserstein gradient flow of a free energy with two competing effects: the Dirichlet energy and the power-law internal energy. Homogeneity of the functionals reveals critical regimes that we analyse. Sharp conditions for global in time solutions, constructed via the minimising movement scheme, also known as JKO scheme, are obtained. Furthermore, we study a system of two Cahn-Hilliard-type equations exhibiting an analogous gradient flow structure.
File in questo prodotto:
File Dimensione Formato  
CEFF24_fourth_order.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 653.08 kB
Formato Adobe PDF
653.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/244199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact