We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $$H\in (0,1)$$. We establish strong well-posedness under a variety of assumptions on the drift; these include the choice $$\begin{aligned} B(\cdot ,\mu )=(f*\mu )(\cdot ) + g(\cdot ), \quad f,\,g\in B^\alpha _{\infty ,\infty },\quad \alpha >1-\frac{1}{2H}, \end{aligned}$$B(·,μ)=(f∗μ)(·)+g(·),f,g∈B∞,∞α,α>1-12H,thus extending the results by Catellier and Gubinelli (Stochast Process Appl 126(8):2323–2366, 2016) to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.

Distribution dependent SDEs driven by additive fractional Brownian motion

Galeati L;
2023-01-01

Abstract

We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $$H\in (0,1)$$. We establish strong well-posedness under a variety of assumptions on the drift; these include the choice $$\begin{aligned} B(\cdot ,\mu )=(f*\mu )(\cdot ) + g(\cdot ), \quad f,\,g\in B^\alpha _{\infty ,\infty },\quad \alpha >1-\frac{1}{2H}, \end{aligned}$$B(·,μ)=(f∗μ)(·)+g(·),f,g∈B∞,∞α,α>1-12H,thus extending the results by Catellier and Gubinelli (Stochast Process Appl 126(8):2323–2366, 2016) to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
File in questo prodotto:
File Dimensione Formato  
Galeati et al. - 2023 - Distribution dependent SDEs driven by additive fra.pdf

accesso aperto

Licenza: Creative commons
Dimensione 835.87 kB
Formato Adobe PDF
835.87 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/244599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 10
social impact