Unshearable and inextensible planar beams, in a static regime of finite displacements, are studied in this paper. A nonlinear mixed model is derived via a direct approach, in which displacements and reactive internal forces are taken as unknowns. The elasto-static problem is then addressed, and the role of the boundary conditions is systematically discussed. The relevant solutions for selected classes of problems are pursued via a perturbation method. It is shown that each considered class calls for a specific algorithm, accounting for a proper scaling and expansion of the variables. Finally, the asymptotic solutions are compared with benchmark numerical computations, grounded on finite-element analyses. The paper is focused on the case of longitudinal force significantly smaller than the buckling load, leaving the case of large force to future developments, where a different perturbation scheme is required.

Revisiting the nonlinear elastic problem of internally constrained beams in a perturbation perspective

Luongo, A.;Zulli, D.;D'Annibale, F.;Casalotti, A.
2024-01-01

Abstract

Unshearable and inextensible planar beams, in a static regime of finite displacements, are studied in this paper. A nonlinear mixed model is derived via a direct approach, in which displacements and reactive internal forces are taken as unknowns. The elasto-static problem is then addressed, and the role of the boundary conditions is systematically discussed. The relevant solutions for selected classes of problems are pursued via a perturbation method. It is shown that each considered class calls for a specific algorithm, accounting for a proper scaling and expansion of the variables. Finally, the asymptotic solutions are compared with benchmark numerical computations, grounded on finite-element analyses. The paper is focused on the case of longitudinal force significantly smaller than the buckling load, leaving the case of large force to future developments, where a different perturbation scheme is required.
File in questo prodotto:
File Dimensione Formato  
pubblicato.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 733.66 kB
Formato Adobe PDF
733.66 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/248581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact