Let A be an associative algebra endowed with a superautomorphism φ. In this paper we completely classify the finite-dimensional simple algebras with superautomorphism of order ≤ 2. Moreover, after generalizing the Wedderburn–Malcev Theorem in this setting, we prove that the sequence of φ-codimensions of A is polynomially bounded if and only if the variety generated by A does not contain the group algebra of ℤ2 and the algebra of 2 × 2 upper triangular matrices with suitable superautomorphisms.

Algebras with superautomorphism: simple algebras and codimension growth

Ioppolo A.;
2024-01-01

Abstract

Let A be an associative algebra endowed with a superautomorphism φ. In this paper we completely classify the finite-dimensional simple algebras with superautomorphism of order ≤ 2. Moreover, after generalizing the Wedderburn–Malcev Theorem in this setting, we prove that the sequence of φ-codimensions of A is polynomially bounded if and only if the variety generated by A does not contain the group algebra of ℤ2 and the algebra of 2 × 2 upper triangular matrices with suitable superautomorphisms.
File in questo prodotto:
File Dimensione Formato  
31. ILM 2024 IJM.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 281.34 kB
Formato Adobe PDF
281.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/250502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact