This paper investigates experimentally and numerically the buckling behavior of three-layered cross-laminated timber (CLT) panels under in-plane axial compression. The main aim is to assess the panels' ultimate limit load and their typical failure mechanisms. A total of 14 specimens were tested. Seven of them were homogeneous (HO series), entirely made of beech, whereas the others were hybrid (HB series), made of beech (outer layers) and Corsican pine (inner layer). The tests gave evidence of a rather stable column buckling capacity for CLT panels, with evidence of major failure mode due to bending. In some cases, rolling shear and delamination were highlighted as additional failure mechanisms. Finally, further assessment of experimental evidence is provided by extended analytical calculations (based on existing formulations, including the Eurocode 5 approach) and even finite-element (FE) numerical analyses for the examined three-layer CLT compositions. Comparative results are discussed in terms of structural performance, capacity, and weakness of analytical models for CLT solutions.
Experimental and Numerical Column Buckling Analysis of Hardwood Cross-Laminated Timber Panels
Sciomenta, Martina
;Fragiacomo, Massimo
2024-01-01
Abstract
This paper investigates experimentally and numerically the buckling behavior of three-layered cross-laminated timber (CLT) panels under in-plane axial compression. The main aim is to assess the panels' ultimate limit load and their typical failure mechanisms. A total of 14 specimens were tested. Seven of them were homogeneous (HO series), entirely made of beech, whereas the others were hybrid (HB series), made of beech (outer layers) and Corsican pine (inner layer). The tests gave evidence of a rather stable column buckling capacity for CLT panels, with evidence of major failure mode due to bending. In some cases, rolling shear and delamination were highlighted as additional failure mechanisms. Finally, further assessment of experimental evidence is provided by extended analytical calculations (based on existing formulations, including the Eurocode 5 approach) and even finite-element (FE) numerical analyses for the examined three-layer CLT compositions. Comparative results are discussed in terms of structural performance, capacity, and weakness of analytical models for CLT solutions.File | Dimensione | Formato | |
---|---|---|---|
fragiacomo-et-al-2024-experimental-and-numerical-column-buckling-analysis-of-hardwood-cross-laminated-timber-panels.pdf
solo utenti autorizzati
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.