This paper investigates experimentally and numerically the buckling behavior of three-layered cross-laminated timber (CLT) panels under in-plane axial compression. The main aim is to assess the panels' ultimate limit load and their typical failure mechanisms. A total of 14 specimens were tested. Seven of them were homogeneous (HO series), entirely made of beech, whereas the others were hybrid (HB series), made of beech (outer layers) and Corsican pine (inner layer). The tests gave evidence of a rather stable column buckling capacity for CLT panels, with evidence of major failure mode due to bending. In some cases, rolling shear and delamination were highlighted as additional failure mechanisms. Finally, further assessment of experimental evidence is provided by extended analytical calculations (based on existing formulations, including the Eurocode 5 approach) and even finite-element (FE) numerical analyses for the examined three-layer CLT compositions. Comparative results are discussed in terms of structural performance, capacity, and weakness of analytical models for CLT solutions.

Experimental and Numerical Column Buckling Analysis of Hardwood Cross-Laminated Timber Panels

Sciomenta, Martina
;
Fragiacomo, Massimo
2024-01-01

Abstract

This paper investigates experimentally and numerically the buckling behavior of three-layered cross-laminated timber (CLT) panels under in-plane axial compression. The main aim is to assess the panels' ultimate limit load and their typical failure mechanisms. A total of 14 specimens were tested. Seven of them were homogeneous (HO series), entirely made of beech, whereas the others were hybrid (HB series), made of beech (outer layers) and Corsican pine (inner layer). The tests gave evidence of a rather stable column buckling capacity for CLT panels, with evidence of major failure mode due to bending. In some cases, rolling shear and delamination were highlighted as additional failure mechanisms. Finally, further assessment of experimental evidence is provided by extended analytical calculations (based on existing formulations, including the Eurocode 5 approach) and even finite-element (FE) numerical analyses for the examined three-layer CLT compositions. Comparative results are discussed in terms of structural performance, capacity, and weakness of analytical models for CLT solutions.
File in questo prodotto:
File Dimensione Formato  
fragiacomo-et-al-2024-experimental-and-numerical-column-buckling-analysis-of-hardwood-cross-laminated-timber-panels.pdf

solo utenti autorizzati

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/254559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact