Let A be a finite dimensional algebra endowed with a superautomorphism over a field of characteristic zero. In this paper we study the asymptotic behavior of the sequence of φ-codimensions cnφ(A), n=1,2,…. More precisely, we shall prove that limn→∞⁡cnφ(A)n always exists and it is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of A. This result gives a positive answer to a conjecture of Amitsur in this setting. In the final part of the paper we characterize the algebras whose exponential growth is bounded by 2.

Codimension growth of algebras with superautomorphism

Ioppolo, Antonio
;
La Mattina, Daniela
2025-01-01

Abstract

Let A be a finite dimensional algebra endowed with a superautomorphism over a field of characteristic zero. In this paper we study the asymptotic behavior of the sequence of φ-codimensions cnφ(A), n=1,2,…. More precisely, we shall prove that limn→∞⁡cnφ(A)n always exists and it is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of A. This result gives a positive answer to a conjecture of Amitsur in this setting. In the final part of the paper we characterize the algebras whose exponential growth is bounded by 2.
File in questo prodotto:
File Dimensione Formato  
Ioppolo, La Mattina - 2025 - JPAA.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 437.5 kB
Formato Adobe PDF
437.5 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/270861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact