Energy saving is currently one of the most important driving factors for innovation all over the world. With reference to global electricity consumptions, electrical energy for compressed air production accounts for 4-5%. Among the rotary compressor technologies, Sliding Vane Rotary Compressors (SVRC) are characterized by noteworthy specific energy consumptions and demonstrated an unforeseen energy saving potential thanks to some intrinsic features specifically related to this kind of machines. The paper presents a further reduction strategy to lower energy consumptions in compressed air systems using SVRCs that relies on the combination of the recent use of a pressure swirled oil injection technology and a dual stage intercooling. The synergy between technologies already mature approaches to the lowest energy consumption and candidates SVRCs as superior machines in the energy context. The saving potential compared to the technology at the state of the art was evaluated thanks to a comprehensive mathematical modeling of the two compressor sections and the intercooling heat exchanger and fan. Results showed a reduction of the electrical power required to drive the compressor system up to 9.5%. The overall approach represents a model-based design for a new machine which is under development.

Model based design of an intercooled dual stage sliding vane rotary compressor system

CIPOLLONE, Roberto;BIANCHI, GIUSEPPE;DI BATTISTA, DAVIDE
2015-01-01

Abstract

Energy saving is currently one of the most important driving factors for innovation all over the world. With reference to global electricity consumptions, electrical energy for compressed air production accounts for 4-5%. Among the rotary compressor technologies, Sliding Vane Rotary Compressors (SVRC) are characterized by noteworthy specific energy consumptions and demonstrated an unforeseen energy saving potential thanks to some intrinsic features specifically related to this kind of machines. The paper presents a further reduction strategy to lower energy consumptions in compressed air systems using SVRCs that relies on the combination of the recent use of a pressure swirled oil injection technology and a dual stage intercooling. The synergy between technologies already mature approaches to the lowest energy consumption and candidates SVRCs as superior machines in the energy context. The saving potential compared to the technology at the state of the art was evaluated thanks to a comprehensive mathematical modeling of the two compressor sections and the intercooling heat exchanger and fan. Results showed a reduction of the electrical power required to drive the compressor system up to 9.5%. The overall approach represents a model-based design for a new machine which is under development.
File in questo prodotto:
File Dimensione Formato  
Model based design of an intercooled dual stage sliding vane rotary compressor system -IMECHE 2015.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/37428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact