"In this paper the authors present an original methodology aiming at the automation of the geometric inspection, starting from a high-density acquired surface. The concept of intrinsic nominal reference is herein introduced in order to evaluate geometric errors. Starting from these concepts, a new specification language, which is based on recognisable geometric entities, is defined. This work also proposes some surface differential properties, such as the intrinsic nominal references, from which new categories of form errors can be introduced. Well-defined rules are then necessary for the unambiguous identification of these intrinsic nominal references. These rules are an integral part of the tolerance specification. This new approach requires that a recognition process be performed on the acquired model so as to automatically identify the already-mentioned intrinsic nominal references. The assessable errors refer to recognisable geometric entities and their evaluation leaves the nominal reference specification aside since they can be intrinsically associated with a recognised geometric shape. Tolerance specification is defined based on the error categories which can be automatically evaluated and which are an integral part of the specification language."

Automatic evaluation of form errors in high-density acquired surfaces

DI ANGELO, LUCA;DI STEFANO, PAOLO;
2011-01-01

Abstract

"In this paper the authors present an original methodology aiming at the automation of the geometric inspection, starting from a high-density acquired surface. The concept of intrinsic nominal reference is herein introduced in order to evaluate geometric errors. Starting from these concepts, a new specification language, which is based on recognisable geometric entities, is defined. This work also proposes some surface differential properties, such as the intrinsic nominal references, from which new categories of form errors can be introduced. Well-defined rules are then necessary for the unambiguous identification of these intrinsic nominal references. These rules are an integral part of the tolerance specification. This new approach requires that a recognition process be performed on the acquired model so as to automatically identify the already-mentioned intrinsic nominal references. The assessable errors refer to recognisable geometric entities and their evaluation leaves the nominal reference specification aside since they can be intrinsically associated with a recognised geometric shape. Tolerance specification is defined based on the error categories which can be automatically evaluated and which are an integral part of the specification language."
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/89613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact