"Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ∼12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells, renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)\/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A(IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternate intracellular pathways."

Distinct cellular responses induced by saporin and a trasferrin-saporin conjugate in two different human glioblastoma cell lines

CIMINI, Anna Maria;BENEDETTI, ELISABETTA;CINQUE, BENEDETTA;CIFONE, MARIA GRAZIA;GALZIO, RENATO;PITARI, Giuseppina;GIANSANTI, FRANCESCO;IPPOLITI, RODOLFO
2012

Abstract

"Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ∼12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells, renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)\/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A(IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternate intracellular pathways."
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/89653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 18
social impact