To date, no effective therapeutic treatment allows abrogation of the progression of prostate cancer (PCa) to more invasive forms. One of the major targets for the therapy in PCa can be epidermal growth factor receptor (EGFR), which signals via the phosphoinositide S-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) pathways, among others. Despite multiple reports of overexpression in PCa, the reliance on activated EGFR and its downstream signalling to the PI3K and/or MAPK/extracellular signal-regulated kinase (ERK) pathways has not been fully elucidated. We reported that the EGFR-selective tyrosine kinase inhibitor gefitinib (ZD1839; Iressa) is able to induce growth inhibition, G(1) arrest and apoptosis in PCa cells and that its effectiveness is associated primarily with phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression (and thus Akt activity). In fact PTEN-negative PCa cells are slowly sensitive to gefitinib treatment, because this molecule is unable to downregulate PI3K/Akt activity. PI3K inhibition, by LY294002 or after PTEN transfection, restores EGFR-stimulated Akt signalling and sensitizes the cells to pro-apoptotic action of gefitinib. The MAPK pathway seems to be involved primarily on cell-growth modulation because dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition (both not cell apoptosis) in PTEN-positive PCa cells and reduced EGF-mediated growth in PTEN-negative cells. Thus the effectiveness of gefitinib requires growth factor receptor-stimulated PI3K/Akt and MAPK signalling to be intact and functional. The loss of the PTEN activity leads to uncoupling of this signalling pathway, determining a partial gefitinib resistance. Moreover, gefitinib sensitivity may be maintained in these cells through its inhibitory potential in MAPK/ERK pathway activity, modulating proliferative EGFR-triggered events. Therefore, our data suggest that the inhibition of EGFR signalling can result in a significant growth reduction and in increased apoptosis in EGFR-overexpressing PCa cells with different modalities, which are regulated by PTEN status, and this may have relevance in the clinical setting of PCa.

Molecular aspects of gefitinib antiproliferative and pro-apoptotic effects in PTEN-positive and PTEN-negative prostate cancer cell lines

BIORDI, ASSUNTA LEDA;GRAVINA, GIOVANNI LUCA;ANGELUCCI, ADRIANO;DOLO, VINCENZA;VICENTINI, Carlo;Bologna M.
2005

Abstract

To date, no effective therapeutic treatment allows abrogation of the progression of prostate cancer (PCa) to more invasive forms. One of the major targets for the therapy in PCa can be epidermal growth factor receptor (EGFR), which signals via the phosphoinositide S-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) pathways, among others. Despite multiple reports of overexpression in PCa, the reliance on activated EGFR and its downstream signalling to the PI3K and/or MAPK/extracellular signal-regulated kinase (ERK) pathways has not been fully elucidated. We reported that the EGFR-selective tyrosine kinase inhibitor gefitinib (ZD1839; Iressa) is able to induce growth inhibition, G(1) arrest and apoptosis in PCa cells and that its effectiveness is associated primarily with phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression (and thus Akt activity). In fact PTEN-negative PCa cells are slowly sensitive to gefitinib treatment, because this molecule is unable to downregulate PI3K/Akt activity. PI3K inhibition, by LY294002 or after PTEN transfection, restores EGFR-stimulated Akt signalling and sensitizes the cells to pro-apoptotic action of gefitinib. The MAPK pathway seems to be involved primarily on cell-growth modulation because dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition (both not cell apoptosis) in PTEN-positive PCa cells and reduced EGF-mediated growth in PTEN-negative cells. Thus the effectiveness of gefitinib requires growth factor receptor-stimulated PI3K/Akt and MAPK signalling to be intact and functional. The loss of the PTEN activity leads to uncoupling of this signalling pathway, determining a partial gefitinib resistance. Moreover, gefitinib sensitivity may be maintained in these cells through its inhibitory potential in MAPK/ERK pathway activity, modulating proliferative EGFR-triggered events. Therefore, our data suggest that the inhibition of EGFR signalling can result in a significant growth reduction and in increased apoptosis in EGFR-overexpressing PCa cells with different modalities, which are regulated by PTEN status, and this may have relevance in the clinical setting of PCa.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact