Phenoxy acid herbicides are used worldwide and are potential contaminants of drinking water. Reversed phase high-performance liquid chromatography (RP-HPLC) is commonly used to monitor phenoxy acid herbicides in water samples. RP-HPLC retention of phenoxy acids is affected by both mobile phase composition and pH, but the synergic eect of these two factors, which is also dependent on the structure and pKa of solutes, cannot be easily predicted. In this paper, to support the setup of RP-HPLC analysis of phenoxy acids under application of linear mobile phase gradients we modelled the simultaneous eect of the molecular structure and the elution conditions (pH, initial acetonitrile content in the eluent and gradient slope) on the retention of the solutes. In particular, the chromatographic conditions and the molecular descriptors collected on the analyzed compounds were used to estimate the retention factor k by Partial Least Squares (PLS) regression. Eventually, a variable selection approach, Genetic Algorithms, was used to reduce the model complexity and allow an easier interpretation. The PLS model calibrated on the retention data of 15 solutes and successively tested on three external analytes provided satisfying and reliable results.
Retention Modelling of Phenoxy Acid Herbicides in Reversed-Phase HPLC under Gradient Elution
Biancolillo, Alessandra;D’Archivio, Angelo Antonio
2020-01-01
Abstract
Phenoxy acid herbicides are used worldwide and are potential contaminants of drinking water. Reversed phase high-performance liquid chromatography (RP-HPLC) is commonly used to monitor phenoxy acid herbicides in water samples. RP-HPLC retention of phenoxy acids is affected by both mobile phase composition and pH, but the synergic eect of these two factors, which is also dependent on the structure and pKa of solutes, cannot be easily predicted. In this paper, to support the setup of RP-HPLC analysis of phenoxy acids under application of linear mobile phase gradients we modelled the simultaneous eect of the molecular structure and the elution conditions (pH, initial acetonitrile content in the eluent and gradient slope) on the retention of the solutes. In particular, the chromatographic conditions and the molecular descriptors collected on the analyzed compounds were used to estimate the retention factor k by Partial Least Squares (PLS) regression. Eventually, a variable selection approach, Genetic Algorithms, was used to reduce the model complexity and allow an easier interpretation. The PLS model calibrated on the retention data of 15 solutes and successively tested on three external analytes provided satisfying and reliable results.File | Dimensione | Formato | |
---|---|---|---|
moleculesherbic.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
5.19 MB
Formato
Adobe PDF
|
5.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.