Morpheeins are proteins that reversibly assemble into different oligomers, whose architectures are governed by conformational changes of the subunits. This property could be utilized in bionanotechnology where the building of nanometric and new high-ordered structures is required. By capitalizing on the adaptability of morpheeins to create patterned structures and exploiting their inborn affinity toward inorganic and living matter, "bottom-up" creation of nanostructures could be achieved using a single protein building block, which may be useful as such or as scaffolds for more complex materials. Peroxiredoxins represent the paradigm of a morpheein that can be applied to bionanotechnology. This review describes the structural and functional transitions that peroxiredoxins undergo to form high-order oligomers, e.g., rings, tubes, particles, and catenanes, and reports on the chemical and genetic engineering approaches to employ them in the generation of responsive nanostructures and nanodevices. The usefulness of the morpheeins' behavior is emphasized, supporting their use in future applications.

Taking Advantage of the Morpheein Behavior of Peroxiredoxin in Bionanotechnology

Ardini, Matteo;Di Leandro, Luana;Giansanti, Francesco;Cimini, Annamaria;Ippoliti, Rodolfo;Angelucci, Francesco
2021

Abstract

Morpheeins are proteins that reversibly assemble into different oligomers, whose architectures are governed by conformational changes of the subunits. This property could be utilized in bionanotechnology where the building of nanometric and new high-ordered structures is required. By capitalizing on the adaptability of morpheeins to create patterned structures and exploiting their inborn affinity toward inorganic and living matter, "bottom-up" creation of nanostructures could be achieved using a single protein building block, which may be useful as such or as scaffolds for more complex materials. Peroxiredoxins represent the paradigm of a morpheein that can be applied to bionanotechnology. This review describes the structural and functional transitions that peroxiredoxins undergo to form high-order oligomers, e.g., rings, tubes, particles, and catenanes, and reports on the chemical and genetic engineering approaches to employ them in the generation of responsive nanostructures and nanodevices. The usefulness of the morpheeins' behavior is emphasized, supporting their use in future applications.
File in questo prodotto:
File Dimensione Formato  
acs.bioconjchem.0c00621.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/153699
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact