Boundary layers are regions into a material domain where gradients localize. They often arise in non-local theories such as second gradient ones, which introduce various internal length scales. This work aims at exploring the properties linked to boundary layers for a few typologies of one-dimensional continua moving in plane. More particularly, three cases are explored: the deflection of an extensible Euler–Bernoulli beam, and the axial deformation of a pantographic beam with nonlinear first gradient and second gradient effects. It is concluded that the size of boundary layers depends on the internal lengths and, when nonlinearities are considered, on the external load.

On Boundary Layers Observed in Some 1D Second-Gradient Theories

Barchiesi E.;Ciallella A.;Giorgio I.
2022

Abstract

Boundary layers are regions into a material domain where gradients localize. They often arise in non-local theories such as second gradient ones, which introduce various internal length scales. This work aims at exploring the properties linked to boundary layers for a few typologies of one-dimensional continua moving in plane. More particularly, three cases are explored: the deflection of an extensible Euler–Bernoulli beam, and the axial deformation of a pantographic beam with nonlinear first gradient and second gradient effects. It is concluded that the size of boundary layers depends on the internal lengths and, when nonlinearities are considered, on the external load.
978-3-031-04547-9
978-3-031-04548-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/189116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact