The particles that we describe here can only move at the speed of light c in three-dimensional space. The velocity, which randomly but continuously changes direction, can be represented as a point on the surface of a sphere of constant radius c, and its trajectories may only connect points of this variety. The Wiener process that we use to describe the velocity dynamics on the surface of the sphere is anisotropic since the infinitesimal variation of the velocity is not only always orthogonal to the velocity itself (which guarantees a constant speed), but also to the position. This choice for the infinitesimal variation of the velocity is the one that best slows down the diffusion of particles in space by random motion at the speed of light. As a result of these dynamics, the position of the particles spontaneously remain confined on the surface of an expanding sphere whose radius increases, for large times, as the square root of time.

Constant speed random particles spontaneously confined on the surface of an expanding sphere

Serva M.
2024-01-01

Abstract

The particles that we describe here can only move at the speed of light c in three-dimensional space. The velocity, which randomly but continuously changes direction, can be represented as a point on the surface of a sphere of constant radius c, and its trajectories may only connect points of this variety. The Wiener process that we use to describe the velocity dynamics on the surface of the sphere is anisotropic since the infinitesimal variation of the velocity is not only always orthogonal to the velocity itself (which guarantees a constant speed), but also to the position. This choice for the infinitesimal variation of the velocity is the one that best slows down the diffusion of particles in space by random motion at the speed of light. As a result of these dynamics, the position of the particles spontaneously remain confined on the surface of an expanding sphere whose radius increases, for large times, as the square root of time.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/249779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact