The fatty acid (FA) profiles of 240 samples of ricotta whey cheese made from sheep, goat, cow, or water buffalo milk were analyzed by gas-chromatography (GC). Then, sequential preprocessing through orthogonalization (SPORT) was used in order to classify samples according to the nature of the milk they were made from. This strategy achieved excellent results, correctly classifying 77 (out of 80) validation samples. Eventually, since 36 (over 114) sheep ricotta whey cheeses were PDO products, a second classification problem, finalizing the discrimination of PDO and Non-PDO dairies, was faced. In this case, two classifiers were used, SPORT and soft independent modelling by class analogy (SIMCA). Both approaches provided more than satisfying results; in fact, SPORT properly assigned 63 (of 65) test samples, whereas the SIMCA model accepted 14 PDO individuals over 15 (93.3% sensitivity) and correctly rejected all the other samples (100.0% specificity). In conclusion, all the tested approaches resulted as suitable for the two fixed purposes. Eventually, variable importance in projection (VIP) analysis was used to understand which FAs characterize the different categories of ricotta. Among the 22 analyzed compounds, about 10 are considered the most relevant for the solution of the investigated problems.

Characterization and Authentication of “Ricotta” Whey Cheeses through GC-FID Analysis of Fatty Acid Profile and Chemometrics

Biancolillo A.;Reale S.
;
Foschi M.;D'Archivio A. A.
2022-01-01

Abstract

The fatty acid (FA) profiles of 240 samples of ricotta whey cheese made from sheep, goat, cow, or water buffalo milk were analyzed by gas-chromatography (GC). Then, sequential preprocessing through orthogonalization (SPORT) was used in order to classify samples according to the nature of the milk they were made from. This strategy achieved excellent results, correctly classifying 77 (out of 80) validation samples. Eventually, since 36 (over 114) sheep ricotta whey cheeses were PDO products, a second classification problem, finalizing the discrimination of PDO and Non-PDO dairies, was faced. In this case, two classifiers were used, SPORT and soft independent modelling by class analogy (SIMCA). Both approaches provided more than satisfying results; in fact, SPORT properly assigned 63 (of 65) test samples, whereas the SIMCA model accepted 14 PDO individuals over 15 (93.3% sensitivity) and correctly rejected all the other samples (100.0% specificity). In conclusion, all the tested approaches resulted as suitable for the two fixed purposes. Eventually, variable importance in projection (VIP) analysis was used to understand which FAs characterize the different categories of ricotta. Among the 22 analyzed compounds, about 10 are considered the most relevant for the solution of the investigated problems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/197149
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact